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OPTTMUM TRANSFERS BE'PWEEN HYPEXEOLIC ORBITS 

(FINITE PLANETARY RADIUS) 

SUMMARY 

INTRODUCTLON 

Given the cost of space experiments, the optimization of orbital maneuvers 
is of evident interest. 
lant maneuver corresponds to a transfer of minimum characteristic velocity. 
is the case for chemical and nuclear rockets and also, for the most part, for 
nuclear-electric propulsion systems. 
between hyperbolic w c s  in the attractive Newtonian field of a massive sphere of 
finite radius are studied here. !The ideal case of zero radius leads to some 
simple solutions but these are not realizable in practice. 
some impulsive transfers, which can be approximated in practice with a very small 
l o s s  by means of finite thrust arcs of short duation. 

For the majority of existing rockets, the minimum-propel- 
This 

It is with this point of view that transfers 

The study leads to 

PART I--EXPOSI!DON OF THE TKEOFETICAL PROBLEN 

Consider a single, spherical, mass-attracting planet of a given radius. At 
time tl = -a a vehiclc which is infinitely far away approaches the planet on a 
hyperbolic orbit. 
orbit, prescribed in advance (and with prescribed orientation) by the transfer of 
minimum characteristic velocity which does not result in collision with the 
planetary surface. 

At time t, = +CO we want the vehicle to be on another hyperbolic 

Possibilities of atmospheric braking or other atmospheric maneuvers will not 
be taken into account. 

Remark I 

The characteristic velocity is the sum of all the propulsive changes of 
velocity. 
acceleration added to the arithmetic sum of all impulsive velocity changes, QV. 
The minimum characteristic velocity transfer corresponds to minimum propellant 
consumption for fixed-exhaust-velocity rockets and for those for which maximum 
thrust corresponds to operation at maximum exhaust velocity (chemical rockets, 
etc.). 

It is,therefore, the time integral of the absolute value of thrust 

Remark 11 

The study leads to some impulsive transfers which are not realizable in 
practice. Fortunately, the replacement of an impulse made at a distance r from 

1 



the  a t t r ac t ive  center by an optimal f i n i t e  t h rus t  arc  of duration t leads t o  a 

lr, t2 s m a l l  l o s s  relative t o  the  idea l  case. The loss i s  always less than 6 tp, T 

being the  period of a c i rcu lar  o rb i t  of radius r, and with t h e  r e s t r i c t ion  t h a t  
the thrus t  acceleration does not vary very much during the t i m e  of t h r u s t  appli-  
cation. 

Remark I11 

I n  the  idea l  case of a point mass planet the optimum i s  w e l l  known (Ref. 1). 
It consists of six i n f i n i t e l y  s m a l l  impulses: 
a t t r ac t ive  center. The 
prac t ica l  problem requires t h a t  one take the  f i n i t e  radius of the planet i n t o  
account. 

four a t  i n f i n i t y  and two a t  the  
The optimum i s  therefore not real izable  i n  pract ice .  

Remark I V  

A t  a la rge  distance from the  a t t rac t ing  planet, one can modify the  asyaptotes 
of a r r iva l  and departure a t  w i l l  (but not t he  asymptotic direct ions)  by means of 
some in f in i t e ly  s m a l l  impulses separated by suf f ic ien t ly  long in te rva ls  of time. 
Likewise one can advance o r  re ta rd  the  motion as much as one wishes with a neglig- 
i b l e  cost  i n  propellant. We can therefore omit consideration of t ransfer  t i m e  and 
rendezvous. 

The posed problem then amounts to: 

with respect t o  the  planet 
Given: V I  = incoming velocity vector a t  i n f in i ty .  

= outgoing velocity vector a t  i n f in i ty .  V, 

R = radius of the planet. 

P = gravi ta t ional  constant of the  plane% = the  product of i t s  mass and 
the  universal gravi ta t ional  constant. 

-0 

Problem: Find the minimum character is t ic  velocity t ransfer  between ?, and V, f o r  
which co l l i s ion  with the  planetary surface does not occur. 
considerations, one can see t h a t  p, and R only come i n t o  the  problem i n  terms of the 
planetary escape speed a t  t h e  surface. We w i l l  define then 

Using some dimensional 

L =J% = escape speed a t  the surface ( L  f o r  l ibgra t ion  i n  French) 

-c 
and a l so  

A = angle (T I ,  V, ) where Ool A i 180' 
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U, =,/v = perivelocity a t  the surface on the hyperbola with IT, a t  
i n f i n i t y  

L2 
A ,  = Arc s in  L2 + zV;2 

L2 + 2v; A, = Arc s i n  

C = character is t ic  velocity of the t ransfer  = 

- 7 designates the t h r u s t  acceleration and AV the impdsive velocity changes. 

Fig. 1. and velocity U,  

PART II--RFISULTS 

2 .1  Evident Cas e s 

2.1.1 The Free Transfer 

- 
If V, = V, and A I2A,, V, and T2 a re  the asymptotic veloci t ies  of the sane 

hgrperbolic o rb i t  which does not in te rsec t  the  planet. 
completely determined (Fig. 2) and it costs nothing i n  terms of propellant. 

The optimal t ransfer  i s  then 

2.1.2 The Optimal Deviation Transfer 

I f  A = A ,  + A, the t ransfer  can be made (Fig. 2 )  by joining two half-branches 
of hyperbolas which a re  tangent at  perigee, using a tangential  impulse, AV = 
IU, - U,l  . It i s  easy t o  see tha t  this cer ta inly corresponds t o  the optimal 
transfer:  i n  effect ,  this optimal transfer,  considered only from the point of 

v i e w  of energy l eve l  change from A t o  - , i s  made optimally by tangential i m -  

pulses o r  tangential  thrust  arcs  as near as possible t o  the center of a t t ract ion,  
and this i s  the case. 

V 2  v,' 
2 2 
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Thus A = A ,  + A ,  : C = IU, - U,I 

A # A ,  + A, : C 2 IU, - U,I 

ac Remark - c o i f  A s A, + A, ; - 2 0 if A 2 A, + A* 
dA a A  

Fig. 2 
A )  f ree  transfer:  VI  = V, ; A I 2Al 

B) "optimal deviation transfer": A = A,  + A, 

2.2 General Cases 

The t ransfers  presented above are  coplanar. They l i e  i n  the  plane passing 
through the center of a t t rac t ion  and containing 'fj, and ?, , One can demonstrate 
that the optimal t ransfer  i s  coplanar fo r  the  case of t ransfers  of inf ini tes imal  
cost (neighbors of the f ree  t ransfer )  and i n  a cer ta in  number of other cases, but a 
general demonstration has not been found although this f a c t  appears evident t o  many 
i n  sp i t e  of the f a c t  t h a t  i n  certaLn cases some non-coplanar solutions are equiva- 
l e n t  t o  coplanar ones. 

I f  one accepts t h i s  general proposition one obtains the  following results. 

2.2.1 The Sub-Optimal-Deviation Transfers 

These transfers correspond t o  the  case A < A, + A, . 
They a re  of f i v e  d i f fe ren t  types: 
1. 
2. Type Fa : non-grazing t ransfers  with two impulses, one a t  f i n i t e  distance, 

the  other a t  in f in i ty .  
3. & 4. 

c i t e d  above. 
5 .  Type PNP: through the parabolic leve l .  ( In  French: par l e  niveau 

parabolique: PNP) 

Type F: non-grazing transfers with an i qu l se  at  f i n i t e  distance. 

Types RF and RFa : grazing t ransfers  corresponding t o  the  two cases 
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This case has an easy geometric construction (Fig. 3). 

Let us put s = 45' - A 
4 

D = Arc tan vz - tan s] 
[ v ,  + v ;  

F = S + D  

G = S  - D  

Fig. 3. Non-skimming t ransfer  with one impulse at  a f i n i t e  distance. 

F and G determine the direction 01, I being the point where the optimal impulse i s  
made. 

v, A t  I the loca l  escape speed is: LI = - cos D ,/ 2 cos2S - cos2D 
s in  G 

which completely determines the point I and the t ransfer  i s  s i tuated within the  
re-entrant angle between V; OV, . 4 

The cost of t h i s  t ransfer  i s  C = (V, + V,) Is in  DI 

The figure formed i n  the neighborhood of the point I by the veloci t ies  of 
a r r iva l  a t  and departure from I, and?; , possesses numerous geometric proper- 
t i e s  (Fig. 4). 

Fig. 4. Geometrical properties of the t ransfer  of the figure 3. 

'0 
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- -4c - 
IQ, = V I  ; I R ,  = VII ; 

IPl = IQ, j IP, = I&, ; 

PI R ,  = P,R,; MP, = MP,; 

A oml = goo - D; c = R , R ,  = (v, + V, ) lsin D I .  

I f  the  impulse a t  i n f i n i t y  i s  suppressed, a par t icular  case of the preceding 
transfer i s  obtained, the case where: 

.....) 1 2s2 s 4  + min(V,, v,) = m a x ( V , ,  v,) ( - + - + - 
5 15 90 

(S being expressed i n  radians). 
of the smaller of the veloci t ies  V I  and V,. It i s  an accelerating impulse i f  
VI c V, and a brake if VI > V,. 

The impulse a t  i n f in i ty  i s  s i tuated on the side 

Analogous t o  Type F, the Type RF t ransfer  i s  distinguished from it by the f ac t  
tha t  i n  Figure 4, the larger  of the two veloci t ies  7, 
a t  a point on the  s t ra ight  l i n e  R,m ( i f  V i  >VI , )  or R,co ( i f  V', >VI,). 

and 7 ,  ends fa r ther  away, 

With respect t o  the point of grazing passage, the impulse i s  on the side of 
the smaller of the two veloci t ies  V I  and V z .  

This  i s  a combination of the m e s  RF and F a .  

These t ransfers  are generalizations of the six-impulse t ransfers  of R e f .  1 

3. 

2.  

3. A t  I, the accelerating iIlrpulse U2 - L permits one t o  acquire the velocity 

t o  the case of f i n i t e  planetary radius. 

(or  the elongated e l l ipse)  FG (Fig. 5) .  

the  shape and orientation of the parabola. 

V, a t  inf in i ty .  Only four impulses are  seen here. Two more in f in i t e ly  small i m -  
pulses applied a t  a great  distance are necessary i n  order t o  obtain the given 

A braking impulse of cost U, - L at  F causes a t ransfer  onto the parabola 

I n f i n i t e l y  s&1 impulses at  far away points G and H allow one t o  change 
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asymptotes; hence the name six-impulse t ransfer .  
then C = U, + U, - 2L. 

The cost  of this t ransfer  i s  

Remark: 
i n  a l l  cases IU, - UII I C optimal 5 U, + U, - 2L. 

This mode of transfer being independent of the  orientation, one can write 

Fig. 5. Transfer "through the  parabolic leve l"  (PNP). 

I n  pract ice  the  PNF' t ransfer  i s  subject t o  non-coplanar improvements i n  the  
greater  than optimal-deviation case. A ,  + A, < A  S 180' - IA, - A,I .  

Given V I ,  V, and A i n  a sub-optimal deviation case, one must first of a l l  
determine t o  which of the f ive  types the corresponding optimal t ransfer  belongs. 

nus:  If: min(VI , V, ) 2 max(V,  , V, ) * (  - + - 15 +.%' ......) 1 2s2 s4 

(s = 7 T - A  
4 

i s  obtained 
o r  PNP. 

I f  t he  

being expressed i n  radians, the maximum of the 

f o r  S = T/4 and equals 0.28693.) The t ransfer  

t ransfer  of type F does not impact the  planet, 

expression i n  brackets 

i s  of the type F or  RF 

it i s  necessary t o  
compare it t o  the type PNP ( the  type RF i s  not then optimal). 

Otherwise ( this  i s  the  case fo r  example i f  IV, - V,ILL f i  ), it i s  necessary 
t o  compare the  types RF and PNP. 

If:  min(V, v,) < max(v,, v,)*(  - 1 + 2s2 - + - s4 + ......) 
5 1 5  90 

the  optimal t ransfer  i s  not of the type F. 
PNP. It can even be of the  type Fa, i n  the case where: 

It can be of the type RF, RFm or 

min(V,, v,) L max(v,, V, ) e (  I + 9 s2 + .......I 
5 8 5  
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Thus it is seen that the  erroneous statement, "if there is an impulse a t  
in f in i ty  the t ransfer  is  necessarily a grazing one," which appeared i n  the  summary 
last April, i s  ccmtradicted by type F m. 

can a l so  see i n  Figure 6 for  the case A = 0. 
This type remains an exception, as one 

t ", Fig. 6. Discussion i n  the  case A = 0. 

3L 

2 L  

L 

0 L 2L 3L v, 

2.2.2 Greater Than Optimal-Deviation Transfers 

These t ransfers  correspond t o  the case A A,  + A 2 .  They are  always grazing. 

1. 
2. Type R w  : with an impulse at  inf in i ty .  
3. Type mRo3 : with two impulses a t  in f in i ty ,  one on each side. 
4. m e  RF: with an impulse at a f i n i t e  distance. 
5. & 6. 

other a t  inf in i ty ,  e i ther  on the same side as  the grazing passage, o r  on the other 
side.  

There are  s i x  different  types. 
Type PNP analogous t o  tha t  encountered above (always optimal. for  A = 1800). 

Type R F w  and F R m :  with two impulses, one a t  a f i n i t e  distance, the  

These t ransfers  w i l l  not be developed. We w i l l  make only the  following 
remarks which a re  equally val id  f o r  the cases of sub-optimal-deviation transfer 
and greater than optimal-deviation t ransfer .  

the tangent and the  loca l  horizontal  ( o r  i n  one of the  two corresponding r igh t  
angles obtained by continuity f o r  the  case of i n f i n i t e  distance). 

1. The impulses are always directed i n  one of the  two acute angles between 

-B 2. The impulses are alwa;ys directed a t  less than 35.264' (= sin-'  - ) 
3 

from the loca l  horizontal .  (Tkis condition, t rue  i f  t he  implllses a t  i n f i n i t y  are  
executed all at one time, i s  no longer t rue  i f  they a re  broken up i n t o  a number of 
impulses o r  replaced by arcs  of continuous thrust, which can be readi ly  done.) 

placed before perigee a re  accelerating thrusts while those placed after a re  braking. 
It i s  the  opposite fo r  t ransfers  with greater than optimal deviation. 

3. For the  sub-optimal.-deviation transfers,  except the case PNP, the impulses 

8 



Figure 7 presents the  r e su l t s  i n  the  case where one of the veloci t ies  (here 
V, ) i s  very much la rger  than L. 

- L Fig. 7. Discussion i n  the  case - - 0, according t o  the posit ion of M: OB = 
v, 

- - - - A  

V, ; OM = V,; BOM = A. A 
-FR 

R 

DEVIATION 
TR A NSF ER" 

AT A GREAT DISTANCE I 
BETWEEN PNP AND OD RcO 
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PART I I I - - U ~ L I Z A T I O N  OF THE TRANSFERS BETWEEN HYPERBOLAS 

TRIPS I N  THE SOLAR SYSTEN 

The speed necessary t o  escape from the  solar  system leaving from Earth i s  
16.6 km/sec. 
braking impulse at  I, (AV = 300 m / s )  and an optimal. deviation t ransfer  a t  I, (AV = 
1.1 km/sec) a l i t t l e  l e s s  than 4 years a f t e r  departure, allows one t o  escape from 
the  solar  system with a character is t ic  velocity of only 15.2 km/sec. 

But the  u t i l i za t ion  of the s e t  of impulses shown i n  Fig. 8 with a 

Systematic u t i l i z a t i o n  of the poss ib i l i t i e s  of hyperbolic t ransfer  offered by 
the  different  bodies of the solar system leads t o  the following fo r  Earth-planet 
t ransfers  between low parking orbi ts .  

Fig. 8. Escape from the solar  system 

A) Direct: C = 16.6 km/s 
B) I,: 13.8 km/s 

I,: 0.3 km/S } C = 15.2 km/s 
I,: 1.1 km/s 
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Characterist ic Transfer Duration of Distance of t he  
Planet from the  Velocity Between Low the Hohann 

Transfer to: Sun (Earth = 1) Planetocentric Parking Orbits Transfer 
1) Hohmann 2) t ransfer  of 

t ransfer  long duration 

Mercury 
Venus 
Mars 

Minor 
Planets 
Jup i t e r  

Saturn 
Uranus 
Neptune 

0.387 13.0 km/s 5.6 km/s 0.290 y r  
0 .E3 7.0 6.8 0.405 
1.524 5.8 5.3 0.71 

2 8.1 

5 -203 24.2 
3 10.3 

5.1 
5 -7 
16.6 

9.55 18.2 13.2 
19.22 14.8 9.8 
30.11 15.8 9.9 

Pluto 39.52 11.0 5 93 

Solar System al 8.7 3.5 
Escape from the  

0.92 

2.70 
1.42 

6.1 
16 
31 

45.5 

a, 

Hohmann t ransfers  are the c lass ica l  t ransfers  by means of an e l l i p s e  which i s  
tangent to both the o rb i t  of earth and tha t  of the t a rge t  planet.  The "long dura- 
t ion" t ransfers  (50 t o  200 years) u t i l i z e  poss ib i l i t i e s  o f f e redby  the presence of 
the  nine major planets and the la rger  satell i tes (Titan, Triton and the four la rge  
satell i tes of Jup i t e r ) .  
o rb i t  of th i s  planet.  

The t ransfer  t o  Mercury u t i l i z e s  the eccentr ic i ty  of the 

From a p rac t i ca l  point of v i e w ,  one can obtain charac te r i s t ic  ve loc i t ies  mid 
way between the Hohmann transfer and the  "long duration" t ransfer  a t  the pr ice  of 
an increase i n  t r i p  t i m e  of the order of 5 t o  10 years with respect t o  the Hohmann 
t ransfer  t i m e .  

Hence: 1. Transfers between hyperbolic o rb i t s  of fe r  l i t t l e  in t e re s t  f o r  

2. 
t r ips t o  Mars or Venus. 

The long mission times t h a t  they impose render them useless f o r  manned 
missions, w h i l e  on the other hand they could be used for the t ransport  of great  
quant i t ies  of supplies o r  of r a w  material. 

Remark: 
of atmospheric braking. 
simple result: 
i n  each case. 

The above study has been carr ied out independent of the poss ib i l i t i e s  
The m a x i m a l  u t i l i za t ion  of these poss ib i l i t i e s  ends i n  a 

the charac te r i s t ic  velocity of a round t r i p  i s  diminished by half 
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CONCLUSIONS 

From the point of view of minimum character is t ic  velocity, optimum transfers  
between hyperbolic orb i t s  are  always composed of impulses and have a t  most two f i n -  
i t e  impulses. While these t ransfers  are  pract ical ly  useless f o r  t r i p s  t o  Mars and 
Venus, t h e i r  u t i l i za t ion  i n  other planetary missions leads t o  a saving i n  character- 
i s t i c  velocity of a few km/sec while requiring an increase i n  t r i p  time of between 
5 and 10 years. 
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